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ABSTRACT

At present there is no reliable approach to model and characterize thermal systems using renewable energy for building applications
based on experimental data. The results of the existing approaches are valid only for specific conditions (climate type and thermal
building properties). The aim of this paper is to present a generic methodology to evaluate the energy performance of such systems.
Artificial neural networks (ANNSs) have proved to be suitable to tackle such complex problems, particularly when the system to be
modelled is compact and cannot be divided up during the testing stage. Reliable “black box” ANN modelling is able to identify
global models of the whole system without any advanced knowledge of its internal operating principles. The knowledge of the
system’s global inputs and outputs is sufficient. The proposed methodology is applied to evaluate three different Solar
Combisystems (SCSs) combined with a gas boiler or a heat pump (HP) as an auxiliary system. The results show that the best ANN
models were able to predict with a satisfactory degree of precision, the annual energy consumption of the all systems except the
SCS combined with air source HP, in different conditions, based on a learning sequence lasting only 12 days. In fact, the annual
energy prediction errors were less than 10% in most cases. The methodology limitations appear in extreme boundary conditions

(Barcelona climate) compared to those used during the ANN training process.
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Nomenclature Nomenclature

DHW Domestic hot water Panw DHW energy rate demand

ANN Artificial neural networks A.G Solar irradiation on the collector plane
SH Space heating Pgp, SH energy rate demand

SC Space cooling Poux Auxiliary system energy rate (HP or gas
AF Activation function boiler input)

HP Heat pump Box Auxiliary system energy rate model
SCS Solar Combisystem prediction

RETS Renewable energy thermal systems BIC Bayesian information criterion

SCSPT Short cycle system performance test

CTSS Component testing and system simulation

CCT Concise cycle test

DST Dynamic system testing

SFH Single family house

SCSASHP Solar Combisystem combined with an air source heat pump

SCSWSHP Solar Combisystem combined with a water source heat pump

SCSGB Solar Combisystem combined with a gas boiler

1. Introduction

Today’s thermal systems for building applications mix an increasing number of energy sources, some of which are available
intermittently. Moreover, more and more systems are multi-functional. They can be used for domestic hot water (DHW) preparation,
space heating (SH) and space cooling (SC). Several studies were conducted to investigate and demonstrate the feasibility and
efficiency of renewable energy thermal systems (RETSs) to save energy in buildings [1-6] (SCSs combined with heat pump) and
[7-10] (SCSs combined with a non-renewable energy source auxiliary system). It has already been observed that some of them have
reached very good performance by saving up to 50% of the auxiliary energy [11]. Unfortunately, this good performance is not met
by every system installed. In fact, RETS behaviour is highly dependent on the climatic conditions and building quality (boundary
conditions) [11-13]. This is why systems could have poor energy performance in some environments. For this reason it becomes
necessary that users could have reliable information about the long-term performance of the system in the wanted boundary

conditions.

The existing methods for SCS performance evaluation and testing can be classified into two categories, depending on their approach
to evaluating primary energy savings: the component approach and the global approach. Methods that are based on the component
approach, such as the Component Testing System Simulation (CTSS) [14-17], the BIN [18-19] methods, consist in separately testing
the main Solar Combisystem components (heat store, controllers, thermal collector, heat pump, etc.) according to existing standard
tests. Depending on the standard used it could be stationary or dynamic (a review of the existing standards could be found in [20-
21]). Following the tests, the physical model parameters of each component are identified. The models are then used within thermal
simulation software, such as TRNSYS, to estimate the overall annual system performance. On the one hand this approach has the
advantage of being able to test any system in different configurations. Using this approach, it is also possible to conduct a design
study and system performance evaluation in different boundary conditions. On the other hand, this approach has four main

drawbacks:

e |ttakes a great deal of time and therefore the whole set of tests is expensive.
e Itis limited to components whose physical models are available and their parameters need to be possible to identify with the
available experimental data.

e It does not allow checking real system controls and interactions between components since they are only simulated.



For the official final published version of this article see: doi:10.1016/j.apenergy.2015.08.049

e [tdoes not allow the detection of design, connection mistakes and installation difficulties.

Contrary to the component approach, the global approach consists in testing the whole system (all components except the thermal
collector and ground heat exchanger) on a semi-virtual test bench. The Short Cycle System Performance Test (SCSPT), Combitest
[22], Concise Cycle Test (CCT) [23] and Dynamic System Testing DST [24], [25], [26] are examples of this kind of method. The
system is charged and discharged according to a specific standard (the case of DST) or test sequence (12 days for SCSPT and CCT,
but only 6 days for Combitest) particular to each method. This kind of approach ensures that all system functions and interactions
(including control logics) are taken into account during the test. Modern systems are often compact and are increasingly
prefabricated and assembled at the factory and manufacturers do not divulgate all the specifications of their products such as
efficiency of each component and internal physical features, some examples are in Figure 1. Therefore, it is difficult to extract a
sub-system from the overall system to test it without degrading the whole system. For all these reasons the global approach methods
based on dynamic short tests are more relevant.
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Figure. 1: Examples of some Solar Combisystems available on the market. They are commercialized by, from left to right, Viessmann, De Dietrich and

Clipsol. The systems are sold compact in order to reduce losses and bad connections.

The Combitest and SCSPT use direct extrapolation from the test results to annual energy consumption (multiplication of the test
results with 365/6 or 365/12, respectively). The procedure for the CCT and DST method is not based on direct extrapolation, but
rather on fitting a global model (usually TRNSYS software) and simulation, as in the component approach. Further detail on the

comparison of the three first methods is given in [23].

Extrapolation to other boundary conditions, different from those of the test sequence, is possible with the CCT method using annual
simulations on the basis of the identified parameter values for the model. For the SCSPT, an extrapolation procedure [27] was
developed at CEA INES, France: The data measured are used to identify a dynamic simplified model of the whole system. The
simplified model, called the “grey box model”, combines simplified physical equations (collectors, building, storage, auxiliary =
“white box”) and an artificial neural network ANN (“black box”). Once the simplified model has been selected and validated, it can
be used for various boundary conditions (collector area, building and climate) in order to obtain annual results. Extrapolation to
other boundary conditions using these methods is based, at least in part, on physical models. The development of such models is
often not easy. In fact, internal components (storage, the regulation system or any other specific system) may be unknown especially
because systems are often compact. Besides, the reliability of the results depends a great deal on the reliability and the hypothesis
used during the development of each physical model. Extrapolation to other boundary conditions using the DST method has not
been investigated yet. Results presented, for instance, in [25-26] concern only long-term performance in a specific environment and
for mono-function systems: combined solar thermal heat pump hot water systems and thermosyphon systems respectively. Those
systems are less complex than multi-functional systems where the control system should manage to keep different levels of
temperature in the storage tank for each function (DHW, SH and SC).
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The literature survey carried shows that there is no reliable and generic method that can predict RETS long-term energy performance
in different conditions. As described earlier, some of the current methods (component approach) cannot model the real system’s
behaviour and the real interactions between its components. The other methods (global approach) at present cannot be applied to
evaluate different types of system, making them non-generic. Also, some of these methods should be applied by an expert due to
their complexity, an additional problem when they are used as a certification tool. Various experts point out that the lack of

performance guarantees is a serious impediment to the commercial development of these thermal system units [28].

The current work presents a new Solar Combisystem performance evaluation methodology. Indeed, the proposed method does not
assume any prior knowledge about the system to be modelled or its components. This makes the method generic, more relevant for
a future tool to evaluate RETS energy performance within the framework of a certification context and easy to use by non-expert
people. This methodology is based on a short dynamic test and the identification of a “black box” model of the system using ANN.

Following [29], the method can be rated as Whole system - Indoor laboratory - Controlled dynamic conditions - Behavioural model
parameters - Simulation. By means of this technique, it will be possible to evaluate the performance that the tested system will have
when installed in any working environment or boundary condition. As a consequence, comparing systems and establishing
performance guarantees become possible.

The present study is focused on the category of RETS that provides both SH and SC as well as DHW from a common array of solar
thermal collectors, backed up by an auxiliary non-solar heat source: a gas boiler, a heat pump or both. These systems are presented
in section 2. In section 3 the proposed performance evaluation approach for SCSs is described, a literature summary of the
application of ANN in system modelling is given as well. In section 4 results of the developed methodology are presented and

discussed, while some perspectives and future studies are given in the conclusion part.

2. SCSdescription

The methodology should be generic. To ensure that it can be applied to different system types, three different types of system were
considered during the validation process: i) the Solar Combisystem combined with an air source heat pump (SCSASHP), ii) the
Solar Combisystem combined with a water source heat pump (SCSWSHP) and iii) the Solar Combisystem combined with a gas
boiler (SCSGB).

These systems are representative of those proposed by manufactures on the current market. Drawings of the three types are
represented in Figures 2 and 3. The distinguishing features of each system are briefly described in Table 1. The condensing gas
boiler can directly heat the water returning from the space heating emitter. It can simultaneously heat the storage tank and the space
heating emitter. The heat pumps are connected to the store via three pipes. The highest of the connections is used for charging the
volume nominally for DHW preparation while the middle one is designed to charge the volume for space heating buffering. Heat
pumps can also directly heat the water returning from the space heating emitter. The solar collectors of all three systems charge the
storage via an internal heat exchanger and the DHW is prepared with an internal heat exchanger covering the whole height of the

store.
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Table. 1: The distinguishing features of the SCSs studied

Auxiliary system Nominal capacity Storage volume (I) ~ Compressor characteristics System classification?
(kw)

Air source HP 8.24 750 Variable speed Parallel system

Water source HP 8.24 750 Fixed speed Parallel system

Gas Boiler (GB) 28 736 - -

2 According to the IEA SHC Task 44 SCS combined with the HP classification
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Figure. 2: Simplified hydraulic scheme of the SCSGB modelled in the present study and tested in the semi-virtual test bench. System components are: (1)
collector, (2) tank storage, (3) DHW tap, (4) SH emitter, (5) control system and (6) gas boiler.

[}
|
Electricity i
I
I

!

-«—

é I—/—‘_ City water

Figure. 3: Simplified hydraulic scheme of the SCSWSHP modelled in the present study. The system components are: : (1) collector, (2) tank storage, (3)
DHW tap, (4) SH emitter, (5) control system (6) heat pump, (7) ground heat exchanger. The drawing of the SCSASHP can be deduced by changing the water
source HP to an air source HP.

3. Proposed performance evaluation approach for SCS

To be relevant and overcome the weaknesses of the current methods, the modelling methodology must comply with the following

five requirements:

(i) It must be generic so it can be used with several SCSs for building applications: Combisystems with a heat pump or boiler

auxiliary, absorption chiller, etc.
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(ii) It must be nonintrusive so this method can be used to model a system using only its inputs and outputs. There is no need to
dismantle the system to test it and therefore no damage to it.

(iii) The method must take into account the whole system so all interactions between subsystems are modelled. The real behaviour
of the system will thus be modelled.

(iv) The system procedure test must be short so the cost of the qualification test is low.

(v) The method must allow predicting the system performance for several boundary conditions, different from the test conditions.

This will enable characterization of the system’s performance.

3.1. The stages of thdevelopedjenericmethodology

To fulfil the first, second and third requirements, the most appropriate solution consists in using a “black box” model. In contrast to
a physical detailed model, designing a “black box” model does not require knowing the system’s internal parameters such as the
efficiency of its sub-systems, thermal conductivities and the mechanisms of the control and regulation systems. When using a “black
box” model, modelling simplification hypotheses necessary to build a physical model, which usually leads to errors, are bypassed.
Therefore, it is possible to identify a global model of the system without being intrusive. As presented in section 1, a global approach
appears more relevant to fulfil the third and fourth requirements. The novel methodology proposed in this paper is based on the
SCSPT that has been developed at INES, the French National Institute for Solar Energy. Artificial intelligence methods are able to
learn from data, so an efficient model can be created with a good ability to generalize results to new data. ANNSs, presented in
section 3.3.1, fulfil the fifth condition.

Step 1 Step 2 Step 3 Step 5
Short sequence Physical system System evaluation
? . - Global model and annual
test testing on a semi- Data acquisition T
g ; identification performance
determination virtual test bench o
characterization

Figure. 4: Process stages of the proposed system’s performance evaluation methodology

The five steps to model and then to evaluate the performance of a system following the proposed approach are represented in Figure
4. The proposed methodology consists on first testing the system to be characterized in a semi-virtual test bench during a short
sequence of time, typically 12 days, and in a dynamic way. Then the harvested data will serve to design a dynamic neural network
model of the system. Basically, the ANN learns the internal behaviour of the tested system. The goal is to have a global model with
a good generalization ability such that it can evaluate the system’s auxiliary consumption, over a year, even with unseen data. The
model can then be used to estimate the system’s annual performances for different conditions. As a consequence it is not required
that the model reproduces faithfully the system behaviour in an hourly or daily basis as long as it can estimate well enough the

annual performance. The ANN developed is inherent to the system tested and thus cannot be used to replace other different system.

3.2. The Short Cycle System Performance T@6ISPT)

The SCSPT method is composed of two main stages: The determination of a relevant weather test sequence and the real system test

on a semi-virtual test bench. In the following the semi-virtual test bench, the test sequence and boundary conditions are presented.

3.2.1. The semuirtual test bench
The semi-virtual test bench was developed to test thermal systems by confronting them to a virtual environment. In fact, the whole
system, including all of its components except the solar thermal collector and the geothermal heat exchanger (in the case of a

SCSWSHP), is physically installed on the test bench, as is usual in a building. The collector and the geothermal heat exchanger are
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not included because it is very expensive to control climatic variables (Solar radiation, air velocity, soil temperature, etc.). To create
reproducible boundary conditions, weather variables, collectors, geothermal heat exchanger, DHW draw-offs, the heat emitter and
the building are simulated, in real time, within the TRNSY'S software. The semi-virtual test bench is represented in Figure 5.

The solar collector model used is the one defined in [30]. Most particularly one can model flat plate and vacuum tube collectors.
The parameters of the model are identified using standard tests. Moreover, the borehole model used is described in [31].

Figure. 5: The semi-virtual test bench located at INES, France

The real system and the virtual environment communicate via hydraulic modules. Modules are plugged into a hot water (180 °C)
and a cold water (=10 °C) network, supplied by a central heating and cooling system. Thus, by means of heat exchangers, each
module can produce or consume heat quickly from a secondary fluid when so ordered. Each loop of the Combisystem (mainly
DHW, SH, SC, collector and geothermal heat exchanger loops) is connected to a module. At every time step (1 min), modules
record the temperature and the flow rate of incoming fluids and send these measurements to the monitoring computer. These
measurements are used as inputs to the TRNSYS simulation software. Then, according to the outputs of the TRNSY'S calculation,
fluid temperatures at the outlet of the modules are adjusted. This way, each module emulates every virtual component simulated by
the software.

3.2.2. The test sequenead boundary conditions
The test sequence is a series of 12 weather days selected and applied to the Solar Combisystem during the test. This sequence is

determined by an algorithm [32] based on TRNSYS simulations of a reference Combisystem so that two criteria are fulfilled:

e  The tested system uses proportionately the same auxiliary energy during the test sequence as it would use during a complete
year with the same boundary conditions. As a result, the auxiliary energy annual consumption is evaluated by a simple
extrapolation, which corresponds to a multiplication by a factor equal to 365/12.

e  Storage energy variations, SH and SC loads are equivalent, day by day during the sequence test to month by month during the

annual sequence.

The boundary conditions are simulated by a building model defined in the IEA Solar Heating and Cooling program Task 32 [33], a
standard DHW draw-off profile and a specific 12-day weather data sequence selected from the annual weather data using the
algorithm presented above.

Boundary conditions for the systems considered in this study — temperatures (outdoor, ground), solar radiation, air velocity,
humidity, loads etc. — are all determined by the collector area, the building quality and the climate where the system is installed.
Therefore, in the present study, boundary conditions will be indicated as the climate-building-collector area. The reference buildings
described in Task32 of the IEA SHC: SFH30, SFH60 and SFH100 (e.g. single family house (SFH) with space heating loads of 30
kwh/m2, 60 kwh/m? and 100 kwWh/m?, respectively, over 1 year for the Zurich climate); Zurich, Stockholm and Barcelona climates
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are adopted herein. For instance, the boundary condition “Zurich SFH60 10 m?” means that the Solar Combisystem is installed in

an SFH60 building type in Zurich with a collector area covering 10 m2.
3.3. TheGlobal modeidentification stage

The global “black box” model identification of the system is the core of the methodology. The identification is made using the data
gathered during the system test following the SCSPT procedure.

3.3.1. Artificial neural networks

ANNSs seem to be the most powerful mathematic tool to solve this modelling problem. It has been shown that they are universal
function approximators [34], so they can be used to approximate the system’s function. ANNs have been applied successfully to
solve complex, nonlinear, dynamic and multivariable problems. They tolerate errors, imprecisions and missing data [35]. ANNs
have been used extensively during the last decade, most particularly to solve prediction and modelling problems in the renewable
energy field. In the following, a brief summary of the most recent studies on modelling SCSs by ANNSs is presented.

In [36] the author used ANNSs to predict long-term performance of forced circulation-type solar domestic water heating. The monthly
predictions of the model developed were highly satisfactory. In [37], an approach based on an ANN model to predict the
performance of a direct expansion solar-assisted heat pump was developed. The training data were obtained from the
experimentation at different solar intensities and ambient temperatures. Because the system does not integrate tank storage, which
has a high thermal inertia, the static ANN model used was enough to obtain relevant results. In [38] the authors investigated the
ability of a static ANN to model the energy behaviour of a typical large solar thermal system. From the results presented, it can be
concluded that the ANN effectively predicts the daily energy output of the system knowing the daily total incident radiation at the
collector level, the daytime average ambient temperature and the storage tank water temperature at the start of the day. The ANN
results were also compared to predictions of another validated method with satisfactory agreements. In [39] the authors developed
a tool for checking annual energy performance and certification of buildings using ANNs. Inputs of the model are composed of
building geometric parameters, climate information and types of energy systems integrated into the building. The results of the
neural model implemented show a good correlation with the actual data. In [40] the authors developed an ANN-based model of a
solar-driven absorption chiller. The model developed was able to predict both the coefficient of performance and the system’s
cooling capacity with a low error. For this study, only five inputs were relevant to model the whole system, i.e. the inlet and outlet
temperatures of the evaporator and generator, and the average temperature of the hot water storage tank. The inputs of the modelling
configuration used are not suitable to evaluate the performance of an absorption chiller when only inlet temperatures and flow rates
are available.

Several other ANN modelling studies have been reported recently, but they focused on modelling isolated system components [41],
[42], [43], [44], [45], [46].

ANN theory is clearly presented in [47] and [48]. ANNs are parametric analytical functions whose concept takes inspiration from
the human central nervous system. A neuron, the basic element of an ANN, can compute values z; from a weighted summation of
its inputs x;. The summation coefficients a)} are called synaptic weights. The subscript [ denotes the neuron number. The neural

operation is presented in eq. 1. The function f; is called the neural activation function (AF).

7= fi(Z, wfx;) eq. 1

Inter-connected neurons constitute what is commonly called a neural network. There are several network architectures and each one

is more suitable for a specific problem than others. The most common architecture for prediction and fitting problems is the class
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of the multi-layer perceptron (MLP). A MLP is a feed-forward network built of neurons, arranged in layers. It has an input layer,
one or more hidden layers and an output layer. In Figure 6 a MLP, with E inputs, C neurons in the hidden layer and S outputs, is

presented. The s™ output of the network can be obtained using eq. 2.

Ys = fss(25=1 wg,sfcc (25=1 wec.cue)) eq.2

Modelling a system using an ANN means building the appropriate network architecture (hidden layers, neurons, AFs) and
identifying the different weights.
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Figure. 6: Formal representation of a neuron (left), example of a neural network MLP with one hidden layer (right)

3.3.2. Optimization algorithm

This section considers models with one output. The multi-output case can be deduced from the simple case. The modelling problem
is equivalent to the determination of an unknown real function F: RE — R that defines the relation between inputs and the output of
the system. When the identification of this function is based on an input-output Dy = {u(t), y(t)}\, set of experimental data, the
modelling process is called “black box modelling. In this case, the relation between inputs and output experimental data can be

described as:

y() = F(u(®) +e(®) eq.3

where e is the observation noise and u is a vector that contains all the system inputs. The noise is usually assumed to have a normal

distribution with a zero mean. The system model is an approximation of this relation but uses a parametric function F:

9(t) = F(e(t);w) eq. 4

where ¢, called the model regressor, is a vector formed by the chosen model inputs, at different times, and only the chosen delayed

outputs.

The model implements a RY — R mapping as well; 9 is the output of the model and w is a vector of parameters to be determined
(synaptic weights). In this study, the structure of the system model is an ANN. The determination process of all elements and
parameters of the ANN such that it fits the observations is called the learning or training process. Parameters are always estimated
by minimizing a specific criterion function (or objective function) so that it is an optimization problem. Usually the cost function

used is the mean square error (MSE):

Obj(w; Dy) = 2T, (¥(®) = 9(©)) eq.5
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Under the assumptions presented in this section, the solution of the problem can be expressed as:
W = arg min Obj(w; Dy) eq.6
w

There exist two categories of methods to find this minimum: the gradient-free and the gradient-based methods. Gradient-free
methods are able to approximate the minimum without calculating the gradient. They use only the values of the objective function.
Genetic algorithms and the simplex method are two examples in this category. Gradient-based methods are based on direct or
indirect derivative calculation of the objective function. The Levenberg-Marquardt (LM) [49] method belongs to the second
category. LM is a kind of combination between the Newton method and the gradient descent. This method was designed to overcome
the calculation of the Hessian matrix, which is very expensive to calculate. The LM algorithm uses an approximation H to the

Hessian matrix in the following Newton-like update:
w(itD = w® — [H(w®) + u@ 1]_16(w(i)) eq. 7

Note that the initial step size must be indicated by the user. When the scalar 4@ is zero, this is simply the Newton method, using
the approximate Hessian matrix. When u® is large, this becomes a gradient descent with a small step size. The Newton method is
faster and more accurate near an error minimum, so the aim is to shift toward the Newton method as quickly as possible. The authors
found in [50] that the LM algorithm is more relevant than the other optimization algorithms that were tested (gradient descent with
momentum, scaled conjugate gradient, resilient back propagation). This is why it was adopted for the methodology developed
herein.

3.3.3. Training strategy

As explained in section 3.3.2, the goal of optimization algorithms is to determine the ANN weights that minimize the model error
based on the training data (observations). Usually, the resulting models fit the learning data set with high accuracy. However, the
model prediction precision may be very poor for unseen data. In some cases, this means that the resulting model has learnt only
characteristics of the training data set and not the system’s behaviour. In other cases, probably the optimizer has been stacked in a
local minimum. The learning strategies are ways to deal with those optimization algorithms and the ANN structure in order to obtain
a model that has good generalization ability. One must be aware that all the optimization algorithms based on the gradient are local
methods. In fact, they are, generally, valid only for a region near the minimum. This is why a good way to prevent the algorithms
to be stacked on a local poor minimum is to train the ANN several times with different starting points (weights initialization). The
initialization method used in the proposed methodology is the Nguyen-Widrow method [51].

Usually measured data are very expensive to harvest and consequently there is not enough data for training. For instance, in the
present work, the short time of the system test, 12 days, restricts the amount of data available for training. Therefore, mathematicians
had to develop a learning algorithm that can use a restricted data set without compromising the model’s generalization ability. For
this reason, it is relevant to use a regularization method for the learning process. Typically, training aims to reduce the sum of
squared errors. Regularization modifies the objective function by adding an additional term: the sum of squares of the network

weights to the objective function, which becomes:
0bj(w;Dy) = a MSE(w; Dy) + BwTw eq. 8
where a and S are two constant parameters calculated using a Bayesian regularization methodology. By constraining the size of

weights, the training process produces an ANN with good generalization ability [52]. In fact, by keeping the weights small, the
model response will be smooth and so over-fitting is assumed to be prevented.
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3.3.4. Model configuration

The definition of the modelling input-output configuration is crucial to develop a generic methodology. Generally, SCS physical
inputs and outputs differ from one to another. They depend on the energy sources used by the system and how this was designed by
the manufacturer. However, energy systems can be represented in terms of power transformation between the renewable energy
source, the load and auxiliary system. This is why a compact configuration with three inputs — P;,, (DHW energy rate demand),
A. G (solar irradiation on the collector plane), P, (SH energy rate demand) and one output P,,,, (auxiliary system energy rate) —
was selected. This open configuration, not particular to a specific system, is relevant to develop a global method. In a recent study
of the authors [53], the results concerning Solar Combisystem modelling showed that a nonlinear auto-regressive ANN model with
exogenous inputs (NARX), for which the regressor is similar to eg. 9, is more efficient than a static model. The latter does not learn
the dynamics of the system, most particularly because of heat storage component inertia. For this reason, a dynamic neural network

was used.
(p(t) = [u(t),u(t - 1), ---;u(t - M):Y(t - 1) ;Y(t - 2): ---;Y(t - P)] eq 9
M and P define the modelling lag space.

When using a dynamic model, the question of how many delayed inputs and outputs to choose arises. There is no rule to find the
right time delays that are necessary to model a system because it depends a great deal on the data and the model structure. In the
present work, time delays are chosen following a trial and error process. Some methods found in the literature (for instance [54])
were tested but they did not give satisfactory results.

3.3.5. Data preparation for training

Usually, training algorithms (even if coupled to an adequate training strategy) do not necessarily guarantee the production of
efficient networks based on raw data. This is why it is essential to carry out some data pre-processing before training. By normalizing
or standardizing the input and target data vectors, the ANN training will be easier and faster, and all vectors will be equally taken
into account during the learning process. Consequently all vectors are equally important. Equation 10 will be used to pre-treat the
training data in order to fall between nory,;, and non,,, (normalization bounds); x represents a vector (input or output of the

model) of data over time.

X=Xmi
I (NOTypgx — NOTmin) + MOy €Q. 10
Xmax~Xmin

Xmin aNd x4, represent the minimum and maximum values of each variable (from the inputs or output) for the whole training data

set.

The modelling time step is equal to 30 min. It was noted that the on-off cycles of the auxiliary system generate discontinuities in

data. To smooth the collected data, a moving average of five time steps was applied to them.

The activation functions chosen to be used in the methodology are, in the hidden layer, the tangent hyperbolic function tanh and,
in the output layer, tanhor a linear function (f:x — x). As mentioned in section 3.3.1, and if tanhis considered rather than the

linear function in the output layer, the model’s structure has only one output (£,,,,.), which is given by:
ys = tanh(X; wis tanh(XE_; oS u.)) eq. 11

It is nearly always helpful to add to each neuron (AF) a fixed input equal to one, which is called a bias. Indeed, a bias value allows

shifting the AF to the left or right, which gives more freedom to the network and thus successful learning. When one hidden layer



For the official final published version of this article see: doi:10.1016/j.apenergy.2015.08.049

is used, like all networks considered in the study, eq. 11 becomes:
ys = tanh(b$ + X., wf tanh(bE + ¥E_, wlcu.)) eq.12
where b¢ and b$are synaptic weights of the bias to the hidden and output layers, respectively.
Following egs. 10 and 12, with tanhbounded between —1 and 1, and by applying triangle inequality, the following can be deduced:
Y <P <9 eq.13

where:

Pmax_Pmin .
Y= nor‘“‘" _n‘;';" — (tanh(b§ — TEoq|we 5|) — normin) + PR eq. 14
max min

PEiS* — PR i
9= m(mnh(bgg + Xl |wg ) — normin) + PRER eq. 15
From eq. 13 it appears that the output from the network is bounded. In order to enhance the extrapolation ability of the ANNSs, the
normalization bounds were chosen carefully so that the bounds in eq. 13 would be large enough. In the case of a linear function, the
normalization bounds are flexible. This is why a fixed normalization interval of £1 is used for all models.

The data quality is crucial so that a reliable and accurate model with good generalization ability can be identified. These data should
reflect the nonlinear and dynamic behaviour of the system to be evaluated as much as possible. The authors have conducted several
studies to determine the optimal strategy to test the system (and thus the optimal learning data) by choosing specific days from the
days of the year in three climates (Zurich, Stockholm and Barcelona). The goal was to create a learning sequence representative of
the three climates. However, the initial SCSPT test sequence (presented in section 3.2) shows the most satisfactory results obtained

to date. Therefore, the latter was retained to create training data.

3.3.6. Model selection

Proposals for the optimal number of neurons to be used in the hidden layer can be found in the literature. Some of them give this
number as a function of the size of the training data set and input-output numbers [55]. Other methods try to give the maximum
number of neurons that is accepted and do not compromise the generalization ability of the network [56]. None of these methods
has been proved and it is easy to find a counter example for each one [57]. The method retained herein is intended to fix a relatively
large number of maximal neurons H,,,, and by a trial and error rule, only one network with a number of neurons between 1 and

Hpax Will be selected.

During the training process, a number of networks are created (with different neurons, initializations, output AF and time delays).

The Bayesian information criterion (BIC) was chosen to select the most relevant network [47], [58]. It is defined by the following:

InN

BIC = InMSE +q—- eq.16

where g is the number of model weights and N the size of the learning data (number of samples).

The MSE (see eq. 5) in BIC is calculated using the training data and in a closed loop architecture (see Figure 7) in which inputs and

the initial values of the outputs, are used to predict the outputs (long-term model simulation) at future time steps.
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Because the true output is available while the network is being trained, it is efficient to use it instead of feeding back the estimated
output. The resulting architecture is called open loop architecture (see Figure 7). The advantage of this architecture (used only

during training) is that the input to the ANN is more accurate.

The BIC selects ANNS, that have a lower BIC value, with a small number of parameters (synaptic weights). This is advantageous

because ANNs with few parameters have a better generalization power, as stated in [59].

The whole training and selection process was developed in MATLAB R2012b and is represented in Figure 8. This process was

repeated for each model structure when changing time delays, normalization bounds and the output AF.

) inputs
AN — T Pu
ANN [r—

Paux
Prux Input delays

Feedback delays

Figure. 7: Open loop architecture (left) and closed loop architecture (right)
In the following section, the results of two different models for each system are presented:

« ANNL1 is the model that is selected as the best model after the comparison of its performance with all the ANN models created

in different boundary conditions (climate, building type and collector area).

» ANN?2 is the model that would be selected based only on the BIC criterion (according to the process described in Figure 8).
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Figure. 8: The training process algorithm applied to each model structure

4. Results and discussion
4.1. Numericalvalidation

This section presents the numerical results of the methodology application developed to evaluate the annual energy consumption of

four different SCSs. The used annual energy consumptions for model validation are simulated and not measured.

Testing all the systems physically over 1 year in different conditions is clearly impossible, so physical detailed and validated

TRNSYS models were used, instead of real systems, in order to validate the ANN predictions in the first step.
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The validation process depends on the availability of each system detailed model (TRNSYS). In fact, the validation protocol of the
two SCSGB systems is represented in Figure 9 where the real system test will serve to create training data but annual simulations
will be done using the TRNSYS model.

4[ Real system ]7

System test according to p N
the SCSPT method Detailed physical model:
TRNSYS
Application of the N o
proposed methodology
(Training) p N
Annual simulations
Annual simulations (ANN L (TRNSYS) )

models)

Comparaison }47

Figure. 9: Validation protocol based on the detailed TRNSYS model. It is used for the two SCSGB systems

4.1.1. Descriptionof gystems models
Four physical detailed models were selected to validate the methodology. All models were developed in TRNSYS software and
some of them as part of the European MACSHEEP project [60]. The parameters of the main components were identified using

experimental tests. In the following a brief description of each model is given:

e Standard SCSGB is a commercial SCS with a condensing gas boiler. The hydraulic scheme of this system is represented
in Figure 2. This model does not take into account heat losses in the loops.

e  Optimized SCSGB is a second system that was derived from the standard one. There is no physical difference between
the two systems, but the control algorithm of the second one was optimized to improve the performance of the system.

e  SCSWSHP and SCSASHP are two SCSs combined with a water or air source HP. The two systems are represented and

described in section 2.

For all systems, the target indoor and DHW temperatures are 20°C and 45°C, respectively. The auxiliary systems are controlled to

keep the upper part of the storage tank temperature near 50°C.

According to the methodology, the systems to be evaluated must be physically tested to build the training data. To do so, the real
systems corresponding to the Standard and Optimized SCSGB were tested according to the SCSPT method in the “Zurich SFH60
16m?” boundary conditions, the conditions used for training. The real SCSs combined with HP were not available; their physical
tests were simulated (in order to create the training data) using the detailed TRNSYS models in the same conditions as the two first

systems (see Figure 10). Annual simulations using TRNSYS were done as well in order to compare them to those of the ANNS.
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Figure. 10: Validation protocol based on the detailed TRNSYS model, used for the SCSASHP and SCSWSHP systems

4.1.2. System energy consumption predictions
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Figure. 11: Inputs (DHW energy rate, Solar irradiation and Space heating demand) and output (Energy rate of the auxiliary system, in this case the Heat

Pump) training data, SCSWSHP, “Zurich SFH60 16m>?”. The data come from the simulated SCSPT method.



For the official final published version of this article see: doi:10.1016/j.apenergy.2015.08.049

The input-output data harvested during the tests were used to design dynamic ANN models for each system, according to the method
described in section 3. An example of the data used for training is represented in Figure 11. The 12 days of the test sequence were

applied successively without interruption. The features of the selected ANN models of each system are presented in Table 2.

All the neural models were used to make annual simulations in different boundary conditions (using the closed loop architecture).
The annual prediction results of each ANN model are compared to those of the detailed TRNSYS models that here represent the
reference.

Table. 2: The distinguishing features of ANN modelling the four systems or physical models

Systems Models  Normalization range  No. of neurons Output AF No. of feedback delays No. of input delays

ANN1  #0.4 5 tanh 1 0
Standard SCSGB

ANN2  +0.4 5 tanh 1 0

o ANN1  £1.0 2 linear 2 1

Optimized SCSGB

ANN2  +0.4 4 tanh 1 0

ANN1 10 2 linear 1 0
SCSWSHP

ANN2  #10 13 linear 1 0

ANN1 10 9 linear 1 0
SCSASHP

ANN2  +0.2 7 tanh 2 1

The most valuable criterion to evaluate the performance of a solar thermal system is to measure its energy consumption during a
specific period of time. For this reason, the power consumed by the auxiliary system, output of the models, was integrated in time
to predict the annual energy consumption of the systems per area of the building (each SFH has two floors measuring 70 m2). The
estimation results are represented in Figures 12, 13, 14 and 15. The collector area was not taken into account as a parameter during
the training process. In fact, during the system test the collector area was fixed (16m?). Therefore only one collector area (19 m?)
was considered to test the capability of ANN models to extrapolate results. VVarying this parameter within a wide range will not be

meaningful because the ANN generalization ability is limited in extrapolation mode.
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Table. 3: Deviation in percent between the neural models and the reference for each boundary condition, case of the two SCSGB that were tested

Zurich Zurich Stockholm Stockholm Stockholm Stockholm Barcelona Barcelona

SFH60 SFH60 SFH60 SFH60 SFH100 SFH100 SFH100 SFH100

16m? 19m? 16m2 19m2 16m2 19m2 16m2 19m?
Standard ANN1 -2,07 -2,10 -9,09 -9,61 -7,52 -7,95 24,13 26,05
SCSGB ANN2 6,87 4,90 0,61 -0,72 5,17 4,44 42,37 41,20
Optimized ANN1 2,53 0,11 -2,64 -4,53 9,98 8,21 42,09 37,12
SCSGB ANN2 6,50 0,63 7,12 6,01 25,33 24,10 38,77 32,91

= ANN1 mReference mANN2

180.0 -
160.0
140.0
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100.0
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20.0
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SFH60 SFH60 SFH60 SFH60 SFH100 SFH100 SFH100 SFH100
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Figure. 12: Comparison of the ANN predictions and the TRNSYS calculations for annual energy consumption, Standard SCSGB.
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Figure. 13: Comparison of the ANN predictions and the TRNSYS calculations for annual energy consumption, Optimized SCSGB.

Each bar in the graphs represents the annual energy consumption per square metre of each system, estimated or calculated by the

corresponding model in one specific environment (boundary conditions): two with ANN and one using the reference model.
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Table. 4: Deviation in percent between the neural models and the reference for each boundary condition, case of the two SCS combined to HP

Zurich Zurich Stockholm Stockholm Stockholm Stockholm Barcelona Barcelona

SFH60 SFH60 SFH60 SFH60 SFH100 SFH100 SFH100 SFH100

16m? 19m? 16m? 19m2 16m2 19m? 16m? 19m?
Standard ANN1 4,28 2,72 1,97 1,53 -2,70 -3,84 -30,19 -36,85
SCSWSHP  ANN2 -14,40 -20,26 -8,41 -13,00 -2,34 -4,54 -55,76 -79,23
Optimized ANN1 18,84 15,95 12,44 14,91 14,64 14,11 -30,89 -53,39
SCSASHP ANN2 34,49 33,79 35,63 35,79 42,99 43,46 17,99 14,13

On the whole, the predictions of the “black box” models and the detailed TRNSYS simulations are very close. In fact, the differences
between the two methods in estimating system energy consumption are nearly within the £10% range (except for SCSASHP) for
most conditions, especially in the case of the SCS combined with water source HP.

For low heat demand boundary conditions (e.g. an environment with the Barcelona climate), the absolute differences are not
excessive but the low energy level makes these differences (deviation in percent) proportionally higher.

= ANN1 mReference mANN2
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Figure. 14: Comparison of the ANN predictions and the TRNSY'S calculations for annual energy consumption, SCSWSHP.
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Figure. 15: Comparison of the ANN predictions and the TRNSYS calculations for annual energy consumption, SCSASHP.

The results show that the ANN model selection based on the BIC criterion does not select the best model. Several statistical criteria
were used as well, but the results are not presented herein. Through the SCS modelling problem, the study shows that the commonly
used model selection criteria are not able to identify the best neural network model for a wide range of unseen data prediction. This

is in accordance with what is stated in [58]. However, the selected ANN models give acceptable precision estimates for all systems,
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but only for certain specific conditions close to the training conditions. In fact, according to Table 3 and 4, the deviations in percent
for the Barcelona climate are the highest except for the SCSASHP system. Solar irradiation in Barcelona is higher all over the year
compared to Zurich, the climate used for training. The two climates are so very different from each other.

The other neural models (ANN1) show very good results for all systems and could be very effective to predict systems’ consumption
for different conditions based only on a short dynamic test. Its error predictions for conditions that correspond to the Zurich climate
are all less than 5% except for the SCS combined with air source HP. The performance of the air source HP depends substantially
on the outdoor temperatures. The days selected during the test sequence do not integrate a sufficient temperature distribution. This
means that the learning sequence does not contain enough information about the system’s characteristics. A solution would be to
develop a dynamic learning sequence that represents all the system’s working conditions.

Some environments are not realistic, e.g. they do not respect the design rules of Solar Combisystems such as combining a high solar
collector area with a low heat-demand building. For those types of environments, predictions are less accurate but still acceptable
because, as noticed above, the corresponding absolute differences are low (less than 4.3kWh/m?2 for the SCS combined to HP and
less than 13kWh/m?2 for the SCS combined to a gas boiler). In general, neural networks do not work effectively in extrapolation
mode. This means that if a set of data is very different from the one used during the learning process, the ANN predictions will be
less accurate. It is commonly known that ANN estimation abilities stay good as long as means and variances of its inputs have
values close to those used during training. In the present study, the results show that by manipulating the normalization bounds, it
is possible to extend the ANN extrapolation capabilities. Indeed, Figure 11 shows that the training data corresponding to the energy
rate of the auxiliary varies between 0 kW and 1.93 kW. The same variable corresponding to the “Stockholm SFH100 16 m?” test
conditions varies between 0 kW and 2.9 kW (Figure 16). This means that the neural models should predict a variable that is
excessively out of range compared to the training data. However, Figure 16 shows that the ANN model was able to predict the
output with satisfactory accuracy, especially in January and February (where the ANN is working in extrapolation). In fact, the
coefficient of determination (R?) is equal to 0.93.
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Figure. 16: ANN and TRNSYS outputs for the “Stockholm SFH100 16 m?” environment, SCSWSHP.

Figure 16 also shows that the neural network model is capable of predicting, with a satisfactory degree of accuracy (coefficient of

determination R2 around 0.93 in “Stockholm SFH100 16 m2”), not only the annual energy, but also its rate.

4.2. Experimentalalidation
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This section presents the results of the experimental validation of the methodology. For the SCS combined with a gas boiler,
predictions of the previous neural models developed in section 4.1.2 are compared to the test data but in a different condition (Zurich

SFH100 16m2). The two system tests are 12 days long (also according to the SCSPT method). The corresponding validation protocol

Real system

System test 1:
Zurich SFH60 16m?

is represented in Figure 17.

proposed methodology

(Training) Zurich SFH100 16m?

Application of the [

System test 2: ]

System simulation in
the conditions of the
test 2 using ANN

Comparaison

Figure. 17: Validation protocol based on the real system tests, used for the two SCSGB systems

Concerning the system combined with HP, only the one combined with the water source HP was tested. Its model, developed on
the basis of the experimental data, was used to predict the annual system consumption in different conditions. This is equivalent to
a real application of the methodology.

4.2.1. The systemtested
The first two systems were presented in section 4.1.1.

The SCS combined with the water HP tested has the same hydraulic scheme as the system described and modelled in section 4.1,
except that the thermodynamic valve upstream of the HP was replaced with two hydraulic pumps. The storage tank has the same
volume as presented above and the HP has a lower nominal 8 kW capacity compared to the system modelled in section 4.1. The
application of the methodology in this case serves to show how it could be used in real life. In this example the results are therefore

not compared to any reference or measured data.

4.2.2. Real neural model exploitation

ANN models trained on the basis of the “Zurich SFH60 16 m?” test sequence in the Standard and Optimized SCSGB, presented in
section 4.1.1, were used to predict the systems’ consumption over 12 days during another experimental sequence (“Zurich SFH100
16 m?”, see Figure 17). Figures 18 and 19 present the energy consumption prediction results.

The models selected based on the statistical criterion show very good results compared to the ANN1 model, especially for the
Optimized SCSGB. The difference between what the selected neural models predict and what is recorded during the test is less than
0.3 kwh/mz,
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Table. 5: Deviation in percent between the neural models and the measured data, case of the two SCSGB that were tested

Zurich

SFH100

16m?
Standard ANN1 -15,38
SCSGB ANN2 -7,69
Optimized ANNL 8,07
SCSGB ANN2 0,81
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Figure. 18: Comparison of the ANN predictions and the test results for the 12 days’ energy consumption, Standard SCSGB, sequence test results.
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Figure. 19: Comparison of the ANN predictions and the test results for the 12 days’ energy consumption, Optimized SCSGB, sequence test results.
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Figure. 20: ANN1 and TRNSYS outputs for the “Zurich SFH100 16 m*” environment, Optimized SCSGB.

An example of the recorded and simulated energy rate is presented in Figure 20. Except at certain times, the ANN predictions are
on the whole very representative of the actual changes overall. The methodology developed herein aims to be a global methodology
that gives satisfactory energy consumption estimations of any system. Therefore, it is not mandatory to have very accurate energy
rate predictions. In system monitoring problems, the model’s accuracy as a function of time is crucial. This requires that the models
not be simulated; they are used to make k-ahead step predictions. This means that the model uses k real past values to predict the
future values. In the present study, ANN models are simulated, as mentioned in section 3.3.6.

Table. 6: The distinguishing features of ANN modelling the tested SCSWSHP
Normalization range No. of neurons Output AF No. of feedback delays No. of input delays

+1.0 2 linear 1 0

mANN2
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Figure. 21: Example of the methodology application. Annual ANN predictions for energy consumption of the real system SCSWSHP tested in the semi-
virtual test bench.

Table 6 presents the characteristics of the selected model of the tested SCS combined with water source HP. This system is not the
one simulated in section 4.1.1. The neural model was used to simulate the system’s dynamic behaviour in different conditions. ANN

predictions are presented in Figure 21. ANN estimations are realistic. They are the same order of magnitude as the SCS water source
HP model (as in Figure 14).
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For the sake of completeness, ANN model predictions should be compared to annual real in situ measurements of different systems

on different climates, building types and collector areas. However, this study would require much more time to be completed.

5. Conclusion and perspectives

In the present paper, the results of the development of a new generic methodology to model thermal energy systems for building
applications are presented. This can be applied to systems as found on the market, obviating the need to dismantle the system in
order to characterize it. The best ANN models developed are able to predict with good level of precision, the annual energy
consumption of different types of systems except the SCS combined with air source HP, in different conditions based on a learning
sequence lasting only 12 days. In fact the annual energy prediction errors were less than 10% in most cases. The methodology
limitations appear in extreme boundary conditions e. g. Barcelona climate (compared to those used during the ANN training process)
where the errors were higher. The proposed approach will be helpful in the context of energy performance guarantees. Moreover,
ANN annual simulation takes only a few seconds. This is ideal for engineers and designers to compare different solutions and select
the system most suitable for a given building and location. The methodology is completely objective; it could be used by non-
experts because its application consists only in testing the system and applying the training algorithm developed.

Neural network limitations appear in conditions that are very different from those used in training. In fact, ANN predictions are
poor for boundary conditions that are very different from the condition used during the physical test.

Future work will concentrate on the development of an optimal method to build up the learning data set. Using data from different
climates and conditions seems to be relevant. This certainly will improve the generalization ability of the neural model and might
also reduce the sequence length. The methodology will be extended to other solar thermal configuration systems that include the
cooling function and ventilation as well. The specific features of ANN energy predictions for each system will also be studied. This
could determine, for instance, corrective operations to be integrated into the methodology in order to improve the accuracy of the
estimations further.
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